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The Solution of Systems of Equations 
Using the E-Algorithm, and an Application 

to Boundary-Value Problems 

By Claude Brezinski and Alain C. Rieu 

Abstract. In this paper, the authors describe the properties of an algorithm to solve systems 
of nonlinear equations. The algorithm does not use any derivatives. The convergence of this 
algorithm is quadratic under quite mild conditions. This method can also be used to solve 
systems of linear equations with infinitely many solutions. The second part of the paper is 
devoted to the application of this algorithm to the solution of multipoint boundary-value 
problems for differential equations. A theorem of convergence is proved and various numer- 
ical examples are given. 

1. Introduction. One of the simpler ideas for solving a multipoint boundary-value 
problem associated with a system of p simultaneous first order differential equations 
in p dependent variables is to reduce the given problem to an initial-value problem. 
If v is a vector of initial values, the boundary conditions may be written in the form 
v = F(v). In this paper, we describe a quadratically convergent iterative process, 
based upon repeated use of the vector --algorithm of Wynn [18], for solving this 
equation and hence solving the given boundary-value problem. 

In the following section, we briefly review some known results concerning the 
use of the vector e-algorithm in the solution of systems of equations and, by 
application of a theorem of McLeod [11], show how this algorithm may under 
certain conditions be used to determine solutions of a set of linear equations Bs = b 
when B is a real singular square matrix. The use of the vector --algorithm to solve 
systems of the form (I - A)s = b where A is a real singular square matrix is also 
studied. This result is in turn used to generalise an algorithm, recently and 
independently discovered by Brezinski [2],[3] and Gekeler [6], for solving general 
systems of p equations in p unknowns. 

The application of the algorithm to nonlinear multipoint boundary-value 
problems is studied in the last section, in which we also give some numerical 
examples. 

2. The Solution of Systems of Equations. 
2.1 The Linear Case. We set the theory in RP (1 < p < oc). The vector c- 

algorithm is a nonlinear sequence to sequence transformation: vectors {e(v)} are 
constructed from the initial values 

eq (q = 1, 2, . . .), e8 = sq (q = 0, 1, ...), 
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{sq} being a prescribed sequence of vectors in RP, by use of the relationships 

(q) = E(q+1) (q+l) _ c(q))-l Ek+1 = k-I + -E k ,1 

where the inverse of the nonzero vector x = (x , x2, ...,xp) is defined to be 
X-1= EP X}lx. 

It was shown by J. B. McLeod [11] that if the vectors {sq} satisfy a linear 
recursion of the form 

(1) E CvSq+v= _E cs (q = 0 1, ...), 
V=0 V=O 

where the {c>} are real numbers with EmLo cv # 0, s is a constant vector, and the 
vectors {fE4v} can be constructed in the sense that at no stage in the determination 
of these vectors _(q+l) = V(q), then fq) = s (q = 0, 1 ... ) identically. (If, in this case, 
limq=,o Sq exists, its value is, of course, s.) 

The above algorithm is also connected [19] with the solution of a set of linear 
equations, expressed in the form 

(2) Bs = b 

where B is a realp xp matrix and b E RP. We set B = I - A so that s = As + b, 
prescribe so, and determine the sequence {Sq} by use of the recursion 

(3) sq+i =ASq+b (q = 0,1, .... 

It is easily verified that 

q-1 
(4) ~~~~sq = Aqso + E A' b (q = O. 1, ...* 

i=o 

If I - A = B is nonsingular, 

(5) sq = Aq{so-B-lb} + B-lb (q = 01,..*) 

If Em 0 cvXv is the minimal polynomial of A with respect to the vector so - B-' b, 
then 

{ cvAv}{so-B-lb} = 0 (q = O. 1, . . .), 
v=O 

i.e., 

(6) ECv{sq+v- B`b} = 0 (q = 0 1, ..). 
V=O 

Setting s = B- 1b, we see that recursions (1) and (6) are equivalent. Hence, if the 
vectors {sq} are produced either by direct use of recursion (3), or by an equivalent 
process, and the vectors {tE~q} can be constructed, then these vectors (in particular, 
the first one are equal to the solution of Eq. (2). 

Our first contribution is to study the case where the matrix A is singular; let X 

be the multiplicity of the root X = 0 for the minimal polynomial of A with respect 
to the vector so - B-lb (it is possible that X = 0, of course). In this case, the 
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coefficients c, (v = 0, 1, , T - 1) of this minimal polynomial are zero. Formula (6) 
yields the reduced recursion 

m-X fm-T 

Cv S+q+7 {x I }s (q = 0, 1,...) 

where cA = Cf+> (V = 0, 1, ... I, m - ), and we derive the result that if no breakdown 
occurs in their construction, the vectors e(q+T) (q = 0, 1,...) are all equal to the 
solution of Eq. (2). For the sake of completeness, we mention that if r > 1, the 
vector v(?) cannot be constructed: the vectors E (q) ) (q = , + 1, . . .,2X) are vetr2m (q) / 2(rn-r)( ,- 1.. r equal, the vectors E2(m_ )+1 (q = I, T + 1, ... ., - 1) are infinite, and thereafter 
the computations required for the construction of the vector E(O) break down. If 
r = 1, we have i) = e2m-2 = s as required. 

Our second contribution is to show that even when the matrix B of Eq. (2) is 
singular, and if a solution exists, then under certain conditions the vector c- 
algorithm may be used to construct solutions. 

THEOREM 1. Let (2) be a set of linear algebraic equations in RP and possess a 
solution s E RP. Having prescribed the initial vector so E RP, let the minimal 
polynomial of B with respect to the vector so - s be of degree m and possess the roots 
X = 0 with multiplicity 1 and X = 1 with multiplicity T; let vectors {sq} be constructed 
by means of recursion (3), where A = I - B. 

If vectors {6(2~Q(m T)>2lcan be constructed by application of the c-algorithm to the 
sequence {sq}, then v 5q+T) = E(q = 0, 1, ) where E is a solution of Eq. (2). 

Proof. We deal first with the case X = 0. 
Formula (4) again holds. Since B is singular, formula (5) cannot be used; 

nevertheless, a solution s exists; we have b = (I - A)s and, from formula (4), 

sq = Aq so + s -Aq s (q = 0, 1, . . . ), 

sq-sq+1 = (I-A)Aq(so-s) (q = 0,1, ...) 

Under the stated assumptions concerning B, the minimal polynomial of the 
matrix A with respect to the vector so - s has the form Ev'=0 cvX, where 

m m-1 m-1 

cVf =0(1 -) = yvVy 0 0 
v=O v=O V=0 

Hence 

m-1 m-1 m-1 
E -EO Uq+v = - ' (I-A)A E yE v A (so - s) = 0 (q = 0, 1, ...). 

Thus the sums occurring on the left-hand side of this relationship are constant: we 
have 

m-i 
(7) E Yvsq+V= 'yE (q = 0,1,...) 

v=o 

say. The fundamental result for the vector --algorithm quoted above tells us that if 
the vectors concerned can be computed, then W-2 = e (q = 0, ...). 

Furthermore, setting q = 0 in relationship (7), 
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m-i 
(I - A)E = y- (I-A) E yv{A(s - s) + s} = (I - A)s = b. 

1-' 

Thus ? is a solution of Eq. (2) as stated. If T > 0 then Eq. (7) can be written with 
m-X instead of m and for q= T, T +I ..... Thus e (+T)q ) (q = 0,=1 ... 
which ends the proof of the theorem. 2(m-r)-2 

If ? and ? are two distinct vectors produced in the above manner from two initial 
vectors go and go, then (1 + a)? - ag where -xo < a < +xo is also a solution of 
Eq. (2). 

Some other results concerning the vector --algorithm can be found in a paper 
by Brezinski [4]. 

2.2 The Nonlinear Case. Let F be a mapping of RP into RP which is differentiable 
in a neighbourhood D of v E RP such that v = F(v). We propose the following 
algorithm for finding v. Select vo E D. For n = 0, 1, . . .: 

(i) Let the matrix I - F'(v) (the prime here and later denotes the Frechet 
derivative [5] with respect to the indicated argument) be nonsingular. Let the 
minimal polynomial of F'(v) with respect to the vector v, - v be of degree m, and 
possess the root X = 0 with multiplicity T. Set Q = m - Tand so = v,. 

(ii) Compute the vectors sq (q = 1, 2, ... , 2Q + T) by use of the recursion 
Sq+l = F(sq) (q = 0, 1 ..., 2Q+ X-1). 

(iii) Apply the vector --algorithm to the sequence sq (q = T, T + 1, ... , 2Q + T) 
(T) and set v,+I = -2Q. 

THEOREM 2. If the above algorithm can be applied, the sequence {v,"} converges at 
least quadratically to the fixed point v of the mapping F, in the sense that ivj+i - vi 
- O(jIv, - vII2), for every vo E D' C D. 

Proof. For the case in which T = 0, the above result has been proved by Gekeler 
[6] and Brezinski [2],[3]. The basic idea of this proof is as follows. During the 
computation of a sequence {sq}, we have, since F is Frechet differentiable, 

(8) Sq+ - V = F'(v)(sq -v) + O[iISq - VI2 
(O[x] denotes a vector whose norm is of the same order as the real number x). Let 
Ev=o cvAY be the minimal polynomial of F'(v) with respect to so - v. Then 

( Cc (sq+V- v) = { 2 cvF'(v)V (so -v) 
(9) V=0 v=0 

m 
+ E cvO[jllso - vI2] (q = 0, 1, ... , m) V=0 

or, since the first sum on the right-hand side of this relationship represents the zero 
mapping, and so = v, 

m 
(10) E Cv(sq+,,- V - O[11vn - v111) = 0. 

V=0 

This condition is very similar to relationship (1) upon which McLeod's result is 
based. We now use the continuity of the vector c-algorithm, and have 

Vn+l = - v + O[JjVn - v 11]. 

If at any stage T > 0 in place of T = 0, the generalization of McLeod's result 
introduced in the proof of Theorem 1 can be used in the above analysis. 
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For mappings of a very special kind, convergence of even higher order than the 
second can be demonstrated. 

THEOREM 3. If for all s in the neighbourhood D described above, F(s) - v 
- F'(v)(s - v) = O[Is - vIa], where a ? 2 is a positive integer, then for the vectors 
{fv} generated by the above algorithm 

(11) liVn+1 - v|| = O(|V - VH ). 

If 0 may be replaced by o in the above condition, a corresponding change may be made 
in formula (1 1). 

Proof. Replace 2 by a in formulas (8)-(10), and thereafter 0 by o. 
Theorem 3 is a generalization of a result due to Ostrowski [12] for p = 1. 
We offer some remarks. Concerning the way in which the algorithm is 

implemented: 
(1) In practice, m and X are unknown. In general, the computations of each stage 

are based on the assumption that m = p, X = 0, so that v,+i = v?) . If, in fact, 
m < p and Xr>O0, then the vectors 4ej72T)-) (q = ,1, .... ) are all equal (they are 
encountered during the attempt to construct e(2)), and we take v+T = ) 

(2) Instead of the vector --algorithm, the scalar --algorithm might be applied to 
each component of the vector {sq}. However, organisation of the computation is a 
little easier using the vector e-algorithm, and numerical experience suggests that this 
mode of application is more stable. 

Concerning the theory of the algorithm: 
(3) If p = 1, the algorithm reduces to Steffensen's method, of which it may be 

considered to be a generalization in p dimensions, and whose properties are shared 
by the algorithm. 

(4) It is impossible, without either calculating derivatives or inverting matrices, 
to construct a quadratically convergent process each of whose iterations requires 
less than 2m evaluations of F. In this sense, the proposed algorithm is optimal. Ulm 
[17] has proposed an extension of Steffensen's method which is of quadratic order 
but is not optimal in the sense that it requires more computations of F and matrix 
inversions. Henrici [9] has given a quadratic method which requires only p + 1 
evaluations of F and a matrix inversion; however, numerical experience (as 
described by Ortega and Rheinboldt [13]) reveals that this method in unstable. 

(5) If the mapping F has a unique fixed point v, and the algorithm converges, 
then naturally the vector sequence produced converges to v. If F has many fixed 
points (as, for example, described in Theorem 1), then the sequence may well 
converge to a fixed point which is not the vector v occurring in the description of 
the algorithm. 

(6) F is not assumed to be a contraction mapping. 
(7) Since, in the next section, we make use of Runge-Kutta procedures in the 

evaluation of F(sq), we mention that Alt [1] has used the vector --algorithm to devise 
an implicit Runge-Kutta scheme in which the step size may be changed at will 
without fear of the effects of instability. We also mention a recent paper by Wynn 
[20] in which repeated use of the --algorithm is applied to integration schemes 
suitable for the numerical solution of differential equations, and a further paper [21] 
in which algorithms related to the --algorithm are used for the evaluation of singular 
and highly oscillatory integrals. 
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3. Application to Multipoint Boundary-Value Problems. Let the components of 
the vector y(t) = y 1(t), y2(t), ... ,yp(t)) E RP be functions of the real variable t, 
those of f t, y(t)} E RP be functions of t and possibly all components of y(t), and 
those of hi{y(ti)} E RP be functions of the fixed numbers y, (ti), . .. , yp (ti) (i 
= 1, 2, . . ., r < ox) where, without loss of generality, we take t1, t2,. . . ,tr to be an 
increasing sequence of real numbers. We consider the multipoint boundary-value 
problem 

(12) dy(t)/dt = f t, y(t)}, 

(13) E hi{y(ti)} = C, 
i=l 

where c E RP is constant. Define y(t; u) to be the solution of Eq. (12) for which 
y(tQ) = u. The function y(t; v) satisfies the above multipoint boundary-value 
problem if and only if 

(14) hi{v} + E hi{y(ti;v)} - c = 0 
i=2 

(Eq. (14) is merely Eq. (13) rearranged). Shooting methods operate by solving Eq. 
(14) and, in this way, reducing a boundary-value problem to a Cauchy problem. We 
use the algorithm of the preceding section to assist in the solution of Eq. (14), 
written in the form v = F(v), where 

(15) F(v) = v + hi{v} + E hi{y(ti;v)} - c. 
i=2 

We now have 

(16) F'(v)= I + h ah{y(t,;v)} y(t;v) 
+= ay av 

In this special case, step (ii) of our algorithm becomes: 
(ii) For q O 1, 1.. ., 2Q+ X-1, 
(a) solve Eq. (12) numerically over the range t1 < t < t, by use of a Runge- 

Kutta or other suitable process to obtain the solution y {t, sq}; 
(b) compute hi {sq}; obtain y {ti; Sq} (i = 1, 2, ... , r) (if necessary by interpola- 

tion) and hence compute hi {y(ti; sq)} (i = 2, 3, ... , 0; 
(c) compute 

(17) sq+i = F(sq) -sq + hi{sq} + E hi{y(ti; sq)} - C. 

Naturally, the results of Theorems 2 and 3 can be applied to the special case of 
our algorithm under consideration in this section. Furthermore, remark (1) of the 
preceding section concerning the value of Q and X to be used at each stage still 
holds. 

Theorem 2, which ensures quadratic convergence, cannot be applied in cases in 
which I - F'(v) is singular. (In the very special case in which F(v) = Av + b, where A 
is a square matrix and I - F'(v) = I - A has the eigenvalue X = 0 with multiplicity 1, 
Theorem 1 can, of course be applied.) It is not an elementary matter to verify whether or 
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not this condition holds for the operators F'(v) considered in this section; we therefore 
introduce some assumptions which are sufficient to ensure that it is satisfied. 

THEOREM 4. (i) Let af (t, y)/ay exist and be uniformly bounded, i.e., let a constant 
k exist such that 

(18) ||af i|| < k V (tY) E= [titr] XRP. ay 
(ii) Let the functions hi{y(t,)} in Eq. (13) have the form Hiy(ti), where Hi is a linear 

operator (i = 1, 2, . .. , r) with SO = t= Hi being invertible. 
(iii) Let 

(19) Itr- tlj < k-iln{I + (E IIHill) IISo& I }I 

Then the multipoint boundary-value problem of Eqs. (12) and (13) has a unique 
solution and, if application of the vector c-algorithm during stage (iii) does not break 
down, the algorithm described above produces a sequence of vectors {vn} converging 
quadratically to v. 

Proof. Under the conditions of the theorem, the multipoint boundary-value 
problem of Eqs. (12) and (13) has a unique solution [7]. 

In the special case being considered, F'(v) - I = S, where 

S = HI + E Hiay(ti;v)/av, 
i=2 

so that 

S - So = E Hi{ay(ti; v)/av - I} 
i=2 

and, using operator norms, 

|S- So|I < E ||Hi|| Ilay(ti;v)/av - I||. 
i=2 

The operator T(t) = ay (t; v}/av - I satisfies the equations 

dT(t) _ af {t, y(t; v)} af {t, y(t; v)} 
dt a T(t) + ay 

and, in view of relationship (18), ||T(t)|| < (ek'I-' - 1). Hence 

r r 

Is - Soil 
< E I|HiHl(ek(tti) -1) < (ekit, til - 1) I E 1Hi1. 

i=2 i=2 

Since tr - t I satisfies inequality (19), we have 

(ekltr-tiI - 1) E I1Hill < IS-'1-1. 
i=2 

Hence IS - Sol < IlSO-'1 - and, from a classical result in the theory of linear 
operators [16] it follows that S is invertible. The result of the theorem now follows 
from Theorem 3. 

The conditions of Theorem 4 are rather restrictive; they exclude such cases as 
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Dirichlet conditions for two-point boundary-value problems. But, in practice, we 
have found our algorithm to be effective for these problems, and also on larger 
intervals than those obeying inequality (19). 

Examples. (1) Our first example is set in R3 and, in the notation of Eq. (13), 
r = 3 also, with t1 = 0, t2 = 2, t3 = 1. In this example, Eqs. (12) and (13) may be 
written in component form as 

(20) Ydy ) 2 (t)-Y3 (t), Yd() =l (t)2 + Y2 (t), dy() = yI (t)2 + y3 (t), it cit cit 

and 

YI (0) = 1, Y2 (2) = e - 4, Y3(1) = -4 - e- e2 

respectively. Thus, in the notation of Theorem 4, we have 

I 0]0 00] 0 0 0] 
H 1L 0 0, H LO I 

OO 
HI= ? ' H2 = 0 1 0 1 H 0 0 0, c e - 4 

0 0 L0 0 0] io 1 L-4- e - e2j 

Starting with the initial vector v0 = 0, carrying out the numerical integration of Eqs. 
(20) as described in step (iia) of the algorithm by means of a Runge-Kutta process 
with absolute error stipulated to be less than 0.510-9, and setting m = 3, X = 0 in 
step (iii), we find that 

VI = (0.921 428 452, -0.951 029 784, -0.100 612 601), 

V2 = (0.999 698 042,-1.002 885 341, -7.49jo - 4), 

VI = (0.999 999 542, -0.999 997 855, -3.701o - 7), 

v4= (0.999 999 995, -0.999 999 996, -1.101o - 10). 

fhe next iteration yields v5 = v4: we have solved the discretized problem to the 
same accuracy as that prescribed for the numerical integration procedure. 

The above boundary-value problem has the unique solution 

y1(t) = 2 - e', Y2(t) = -4 - (4t - 2)e' + e2', 

y3(t) = -4 - (4t - 3)et + e2'. 

Thus (YI (0),Y2(0),Y3(0)) = (1, -1, 0), the vector computed to the prescribed accu- 
racy by our process. If the recursion Sq+I = F(Sq) is left to look after itself, it 
diverges. The application of the vector --algorithm to the 24 first of these iterations 
fails to approach the solution. 

(2) In the second example, p = 4 and r = 2, with tj = 0, t2 = 1; Eq. (12) has 
the form 

(21) dy(t)/dt =-y(t); 

Eq. (13) has the form described in clause (iii) of Theorem 4, with 
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-o e-l 0 0 ~ 1 0 00 [1 e-I 0 010 1 Iii 1 
0 0 100 I Hl=[?e?0 o j m 0 0 0 1 oj1 

o H=[ O O 001 L1i 
We first remark that there is, in this very simple case, no need to go through the 

numerical integration process of step (iia) of the algorithm: Eq. (21) can be solved 
exactly by inspection. Secondly, in this case Eq. (15) takes the form 

(22) v = v - Gv + c 

where G = H1 + e-'H2. It can immediately be seen that the solutions to our 
example satisfy the conditions 

(23) Yi (?) + Y2(0) = e, y3 (0) = y4(0) = e, 

and are infinite in number. Equation (22) is purely algebraic; its solution may be 
studied with the help of Theorem 1. The minimal polynomial of A = I - G is 
(1 - e-l - X)(l - 2e-1 - X)(1 - X); it is of degree 3 and has 1 as a single root. It 
follows from Theorem 1 that for any initial vector vo, the vector e) = g 
= (gl, g2, g3,g4) (if not a precedessor) derived by means of the --algorithm from the 
vectors vo, . . ., v8 produced by the iteration vq+l = Vq - Gvq + c will be such that in 
terms of Eq. (21), y(t; g) satisfies the boundary conditions (23) and, in particular, 
gi + g2 = e, g3 + g4 = e. Starting with vo = (-2, 1,3, 1), we find, to the accuracy 
indicated, that 

.4) = (0.85914 091422, 1.85914 091422, 2.71828 182845, 2.71828 182845). 

(3) The last example is a rather more difficult nonlinear two-point boundary- 
value problem [10],[14] set in R5, and tj = 0, t2 = T where T is a prescribed positive 
real number. Equation (12) has the form 

dyi (t) _2() dY2 (t) 
_3W 

dt Y2(t), dt 

dY (t) 
=-l.55y&(t)y3(t) + O-lY2(t)2 + 0.2y2(t) -y4(t)2 + 1.0, 

(24) dt) 
dy4(t) - t) 

Ydt( y) =155yI(t)Y5(t) + 0.2y4(t) + 1.1y2(t)y4() - 0.2 

and Eq. (13) may be written as 

YI(0) = Y2(0) = Y4(0) = 0, Y2(T) = 0, y4(T) = 1. 

This example is derived from a boundary layer problem. The solutions of the 
differential equations (24) are very sensitive to small variations of the initial 
conditions, and for large values of T it is impossible to solve the above boundary- 
value problem directly by shooting methods. 
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Roberts and Shipman [15] have attacked the above problem by means of a 
continuation method, solving the problem over the interval [0, Tj] with Y2(Tj) = 0, 
Y4(Tj) = 1 at each stage, where 0 < T1 < 7< ... < Tp< = T (j' < oo). We use 
our algorithm in the same way. Each problem, solved over the interval [0, Tj], results 
in the determination of missing initial values Y3 (0), Y5 (0); these are used in 
conjunction with the remaining fixed initial values as an initial guess upon which to 
base the construction of a solution over the interval [0, T7+i]. Table 1 gives these 
successive missing values for successive values of Tj and the error 

r 2 

h1(v) + E hi{y(ti; v)} - c 

During the computation over the early intervals [0, Tj] agreement to only three or so 
decimal figures is required; agreement to a larger number of decimal figures is reserved 
for the later intervals. As a point of detail, we mention that in this case a parameter 6 was 
introduced into Eq. (17) which becomes 

Sq+I = Sq + 8[hI(Sq) + E hi y(ti;sq)} - 

8 being taken small enough to suppress the effects of the explosive growth of y(t; Sq) 
(values of 8 between 10-8 and 10-12 were used); thus, we can avoid too small 
increments of T7 at each stage and save considerable computing time. The true 
solution of this problem is unknown and it is impossible to say how many decimal 
figures are exact. 

The results of Table 1 agree to six figures with those of Roberts and Shipman. 
These authors give a justification [15], based on the Kantorovich sufficiency theorem 

TAB LE 1 

Y3(0) Y5(0) error 

3, 5 -.9738661361858899 .6470687025823338 .17D - 1 

4 - .9691814158187645 .6525290853740247 .36D - 5 

4, 5 - .9666762206420572 .6531111218305619 .70D - 7 

5 - .9662973199428564 .6529987946964353 .29D - 11 
5, 5 -.9662891737064793 .6529317756489144 .74D - 11 
6 -.9663041351251466 .6529134552438886 .50D - 12 

6,5 - .9663099896872114 .6529099441374421 .16D - 8 

7 -.9663114878332717 .6529095123304221 .23D - 9 

8 - .9663118133931346 .6529095593410232 .58D - 12 

8, 5 - .9663118098329179 .6529095729051251 .1OD - 14 

9 -.9663118055095461 .6529095769575010 .22D - 15 

10 - .9663118030841837 .6529095779273979 .54D - 15 
10, 5 - .9663118029686369 .6529095778846625 .77D - 8 

11, 2 -.9663118029692275 .6529095778464226 .34D - 12 
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for Newton's method, for the continuation method when used in conjunction with 
quasi-linearisation [8]. Unfortunately, a similar justification for the continuation 
method used in conjunction with our method has not yet been achieved. 

In conclusion we remark that the boundary conditions (13) are not the most 
general that can be treated by the method described above. 
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